

MEASURING OVERDRIVE

Positive overdrive must exist in order for lotension systems to operate properly. Overdrive is the amount of *slippage* between the belt and the drum or cage. The surface *MUST* move faster than the inside edge of the belt in order for proper operation of the lotension system. If there is no overdrive or if the drum surface is moving slower than the belt, the drum acts as a brake and can cause severe damage to the belt.

Overdrive is expressed as a factor of the vertical distance between tiers or tier pitch. In general, the minimum over drive should be

Belt Construction	Plastic cage	Metal cage
Belt with metal edge links	2-4 tier pitches	1-2 tier pitches
Belt with plastic edge links	4-6 tier pitches	2-4 tier pitches

Every system is unique; the above chart represents the minimum recommend setting. Increased over drive may be required for optimal belt performance.

To measure the amount of overdrive, stand facing the cage or drum as shown below:

- Mark a cage bar or a spot on the drum so that is easily identifiable •
- Place an object on the belt at the inside edge in line with the cage marker
- After the object has made one complete revolution *immediately measure* the distance between it and the cage marker *along the inside edge of the belt*
- Divide this distance by the tier pitch to convert to number tiers of overdrive (see page 2)
- Overdrive can also be measured at the outside edge, but this distance must be multiplied by the ratio of the ۲ inside radius divided by the outside radius (see page 2)

START

AFTER ONE FULL **BELT REVOLUTION** Measuring Overdrive

Number Tiers of Overdrive = <u>Distance @ inside</u> Tier Pitch

Or

Number Tiers of Overdrive = Distance@Outside xInside RadiusTier PitchOutside Radius*

*Outside Radius = Inside Radius + Belt Width

Note the relationship between overdrive and tension as shown in the following graph:

*RW = Radius Weight

High overdrive decreases belt tension while low overdrive increases belt tension:

- High overdrive will cause belt surging which can disrupt product flow or cause excessive product movement or marking
- Low overdrive produces smoother operation but the higher belt tension will decrease belt life
- The optimal amount of overdrive, therefore, is a compromise between smooth operation and low tension

Copyright © Ashworth Bros., Inc. - All rights reserved. This document may not be reproduced in whole or in part without the express written consent of Ashworth Bros., Inc.

Ashworth Bros., Inc. provides this information only as a service to our customers and does not warrant the accuracy or applicability of the information contained herein.

Ashworth Jonge Poerink by Enschede, The Netherlands Tel: +31.53.4816500 Fax: +31.53.4816555 Email: ashworth@ashworth.nl Ashworth Bros., Inc. Winchester, VA U.S.A. Phone: 540-662-3494 Fax: 800-532-1730 Email: ashworth@ashworth.com Website: <u>www.ashworth.com</u> Ashworth Europe Ltd. Kingswinford, United Kingdom Tel: +44-1384-355000 Fax: +44-1384-355001 Email: ashworth.europe@ukgateway.net